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Introduction

AZOR et al.! recently published a comprehensive study

in which the head-on-reflection of a planar shock wave
from a rubber-supported flat plate was investigated analyti-
cally, numerically, and experimentally. They pointed out in
their study that the reflection process depends on the degrees
of freedom of the supporting rubber to expand in the x, ¥, and
z directions.

Consider Fig. 1, where the considéred problem is schemati-
cally illustrated. As shown in the bottom part of that figure,
there are three modes of compression that could be experi-
enced by the rubber: )

1) A uniaxial stress mode in which the rubber is free to
expand in both the y and z directions and hence can develop
stresses only in the x direction. Consequently, for this mode of
compression o, #0, 06, =0, 0, =0, ¢, #0, ¢, #0, and ¢, #0.

2) A biaxial stress mode in which the rubber is free to
expand only in its z direction and hence can develop stresses
both in the x and y directions. Consequently, for this mode of
compression o, # 0, 0, #0, 0, =0, &, # 0, ¢, =0, and ¢, # 0.

3) A uniaxial strain (also referred to as triaxial stress) mode
in which the rubber cannot expand either in the y or the z di-
rections and hence develops stresses in the x, y, and z direc-
tions. Consequently, for this mode of compression o, 0,
0, #0,0, #0, ¢, #0, ¢, =0, and e, = 0.

Detailed derivation of the governing equations of the prob-
lem under consideration is given in Ref. 1 together with a list
of the equations in nondimensionalized form. Consequently,
only the assumptions upon which the governing equations
and their solutions are based are given here. They are the
following:

1) The flow is one dimensional.

2) The gas is an ideal fluid.

3) The gas behaves as a perfect gas.

4) The gravitational force is negligibly small.

5) The rubber is perfectly elastic, isotropic, and incompress-
ible.

6) The changes in the internal energy of the rubber are
negligibly small.

7) The stresses that develop in the rubber are uniformly
distributed along any cross-sectional area perpendicular to the
x axis; therefore the rubber’s cross-sectional area remains
planar throughout the compression process.

8) The cross seéction of the rubber is uniform.

9) The transverse dimensions of the rubber are small with
respect to the longitudinal dimensions.
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10) The rubber does not buckle under the compressive
loads.

The final set of the governing equations, in a Lagrangian
form, consists of 10 equations, namely, 1) conservation of
mass in the gaseous phase, 2) definition of the gas particles’
velocity, 3) conservation of linear momentum in the gaseous
phase, 4) conservation of energy in the gaseous phase, 5) equa-
tion of state for the gaseous phase, 6) conservation of mass in
the rubber, 7) definition of the rubber particles’ velocity,
8) definition of the extension ratio in the rubber, 9) conserva-
tion of linear momentum in the rubber, and 10) the constitu-
tive (stress-strain) relation for the rubber.

The set of governing equations that consisted of 10 depen-
dent variables, and hence was solvable in principle, was trans-
formed into a set of central finite difference equations. The set
of finite difference equations was solved with second-order
accuracy using the artificial viscosity technique. More details
about the numerical solution can be found in Ref. 2.

The experimental investigation of the problem under con-
sideration in the case of a biaxial stress mode of compression
was reported in detail in Ref. 1. Hence, the purpose of the
present Note is to report on our experimental investigation in
the case of a uniaxial strain mode of compression.

Present Study

Unlike the uniaxial stress and biaxial stress modes of com-
pression that have stress-strain relations that are available in
the open literature, a similar relation for the uniaxial strain
mode of compression does not exist. As a consequence, in the
course of the present study, the following stress-strain relation
was developed for the case of a uniaxial strain compression
mode:

2G(1+v)
T = 22/(1— )

where o, is the stress in the x direction, A, is the extension ratio
in the x direction (note that A = 1— ¢, where ¢, is the strain in
the x direction, for compressive loads 0< A\, <1), v is Pois-
son’s ratio, and G is the elasticity constant.

It should be noted here that, as shown in Fig. 1, the uniaxial
strain compression mode cannot satisfy by definition the as-
sumption of an incompressible rubber since in this case ¢, #0,
e,=¢€,=0, and hence the volume of the rubber changes
whereas its mass remains constant. As a consequence, Eq. (1)
is limited to small deformations only, i.e., small values of ¢,.
This limitation ensures that the total change in the volume of
the rubber is small enough to assume that its density remains
constant.
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Experimental Results

The experimental setup for obtaining the uniaxial strain
compression mode is shown in Fig. 2. The cross section of the
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Fig. 1 Schematic illustration of the problem under consideration.
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Fig. 2 Experimental setup for the uniaxial strain compression.

rubber rod was 4 X 4 cm, and its initial length was 10 cm. Its
initial density Oy, Was 1007 kg/m3, and its chemical composi-
tion was 100.0 g natural rubber, 2.0 g stearine, 5.0 g zink
oxide, 10.0 g carbon black haf, 2.0 g antioxidant 224b, 2.75 g
sulfur, 1.0 g cyclohexyl benzothiozol sulfenamide (CBS), and
0.1 g tetra methyl thivram disulfide (TMTD). This composi-
tion ensured good elasticity. To have a good estimation of the
elasticity constant of the rubber, it was compressed in an
Instron machine under a biaxial loading mode. The experi-
mental results were fitted to a curve of the form o = G(A — 1/
M), which is the form of the stress-strain relation for a biaxial
compression mode. The maximum deviation of the experi-
mental results from a curve having a value of G = 931,667
N/m? was less than 5%.

Based on Nowinski,> compression waves, generated in a
solid material, will converge to a shock wave if the stress-
strain relation of the material fulfills the following two re-
quirements:

0,
—>0 2
o, (2a)
do,

>0 2b
e (2b)

From the stress-strain relation of a rubber [see Eq. (1)1, it is
clear that the requirements given by Eqs. (2a) and (2b) are not
fulfilled, and hence the compression waves are not expected to
converge to a shock wave in a uniaxial strain mode of com-
pression.

The stresses ‘developing in the rubber rod were measured
using Kistler piezoelectric pressure transducers at three differ-
ent locations that are marked in Fig. 2 as MK1, MK2, and
MKS5 and are located 3, 7, and 10 cm, respectively, from the
front of the rubber rod.

The stress histories as recorded at these three locations, i.e.,
MK1, MK2, and MKS5, for an incident shock wave Mach
number M; = 1.54, an initial pressure P, = 0.985 bar, and an
initial temperature of T, = 292.5 K are shown in Figs. 3a-3c,
respectively. The stress histories at MK1, MK2, and MKS5
clearly indicate that the compression waves did not converge
to a shock wave. Furthermore, it is seen that the waves move
faster in reality (the actual experiment) as compared with the
numerical simulation. (Note that the solid lines start to rise
earlier than the dashed lines.) The wave propagation velocity
¢, can be calculated from*

1 do,
Pro Mg
where Pry is the initial density of the rubber (note that under
the assumption that the rubber is incompressible its density
remains constant).

Using this relation together with Eq. (1) clearly indicates
that in the present case

26 1+
=1 r
pro 1 = 277/(1 = )

=

3

@

" Consequently, based on the foregoing discussion, it could
be concluded that the value used in the numerical simulation
for the elasticity constant G is smaller than the actual one.
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Fig. 3 Stress histories as recorded by the Kistler pressure transducers
that were mounted at a) MK1, b) MK2, and ¢) MKS5 (see Fig. 2).

This could be due to the fact that the value of G, asused in the
numerical simulation, was obtained from a biaxial stress static
compression experiment, whereas the actual loading process is
a uniaxial strain compression mode and dynamic.

As can be seen in Figs. 3a-3¢, two numerical simulations
were conducted, the first neglecting the friction between the
rubber rod and the solid sufaces that bounded it, the second
accounting for the friction by means of a simplified model for
which the coefficient of friction was chosen to be p=0.025.
Although the peak stress value in Fig. 3a is seen to be smaller
than the numerically predicted one, the peak stress values in
Figs. 3b and 3¢ are seen to be predicted quite well. The peak
over stresses (i.e., P— P, where Py=0.085 bar) as measured in
stations MK1, MK?2, and MKS5 are 5.8, 8.35, and 11.44 bars,
respectively. (Note that there is a saturation in the recorded
stress in Fig. 2b; hence the actual stress is somewhat larger
than the recorded plateau.) Consequently, the peak stresses in
these stations are 6.785, 9.335, and 12.425 bars, respectively.

The peak pressure at MKS clearly indicates that the pressure
acting on the end wall of the shock tube is significantly en-
hanced due to the presence of the rubber rod. Note that had
the incident shock wave reflected head on directly from the
endwall, the pressure at the endwall would be 5.897 bars.
Hence, the pressure at the endwall is more than doubled due to
the presence of the rubber.

1t is also important to note that, although the numerically
predicted stress profiles do not simulate the actual profiles
well enough, the time durations of the stress pulses are very
well simulated at all three locations. Note that due to the
extremely strong dumping mechanism that is involved in the
actual experiment, only the first loading cycle could be simu-
lated using our simplifying physical model. Note also that
when friction is not accounted for, the numerical simulations
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are seen to have a repeating cycle. However, the inclusion of
friction induces a decaying mechanism that results in a better
agreement with the experimental results. (Compare the dashed
and the dashed-dotted lines.)

Conclusions

The head-on reflection of a planar shock wave from a
rubber wall experiencing a uniaxial strain loading mode that
was investigated numerically during a previous study' was
compared with experimental results that were obtained re-
cently.

It has been demonstrated that Kistler piezoelectric pressure
transducers could be used to record stresses in rubberlike
materials, although they originally were designed to measure
pressures in fluids.

In view of the previous remark, the comparison of the
actual experimental results with the numerical simulations
revealed a very good agreement as far as the durations of the
stress pulses are involved and fairly good agreements as far as
the shapes and peak values of the stress pulses are concerned.

Finally, the conclusions from the numerical investigation®
that rubberlike materials cannot be used to reduce head-on
reflecting shock wave loads on structure have been verified
experimentally. Both the numercial and the experimental in-
vestigations clearly indicate that the presence of the rubber
results in a significant amplification of the pressure acting on
the endwall of the shock tube. Consequently, experimental
setups similar to that shown in Fig. 1 could be used as pressure
amplifiers.
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1. Introduction
ARGE deformation, three-dimensional analyses of axisym-
metrical structures can be costly in spite of the relatively sim-
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ple geometry. One approach to efficiently analyzing such prob-
lems is to use axisymmetric elements that are formulated to allow
for nonaxisymmetric deformations. A cylindrical coordinate sys-
tem in the context of a total Lagrangian formulation seems appro-
priate for these elements.

Although many programs use cylindrical, spherical, or local
coordinate systems for input convenience, the underlying formula-
tion is usually based on Cartesian reference systems.> Although
significant efforts have been devoted to cylindrical formulations,
most efforts have been restricted to small displacements*> or shell ele-
ments.&“

This Note discusses a Lagrangian finite element formulation in
general orthogonal curvilinear coordinate systems, including the
basic components describing Lagrangian strains and strain incre-
ments and the procedure for integrating these into the virtual work
equation. This generalized formulation is applied to a solid cylin-
drical finite element that is demonstrated at the end of this Note.
Although developed to address structural problems in the oil
industry, the formulation developed herein is general with much
broader application potential.

II. Lagrangian Strains in Curvilinear Coordinates

Lagrangian formulations use the Green-Lagrange strains be-
cause they have the desirable characteristic of remaining invariant
under rigid-body rotation. Many authors express Green-Lagrange
strains in terms of the deformation gradient in general curvilinear
or orthogonal curvilinear coordinate systems.!'>-* The develop-
ment that follows is based largely on Malvern’s discussion.!? In
orthogonal coordinate systems, the covariant and contravariant
components are coincident, and so only one component type needs
to be considered. Therefore, the convention of summation for
repeated subscripts is used in this Note.

The spatial components of the material vector may be expressed
in terms of the material components through the deformation gra-
dient tensor Fp,:

hk ox,
ds, = = v ds, =F, ds, (1)

This can be substituted into the expression for the Green-
Lagrange strains, giving

dx, dx
B, - [(h) « 9%, 6,-] @
2 HHJaXBX

In finite element applications the strains must be expressed in
terms of the displacement. field. This requires appropriate dis-
placement measures to be defined. Although Cartesian scale fac-
tors are independent of location and displacements, in curvilinear
coordinate systems location-dependent scale functions add consid-
erable complexity. At this point most authors simplify their dis-
cussions to infinitesimal strain formulations,'>!3 so that physical
displacements can be used as field variables, and the scale func-
tions can be assumed to be constant.

Defining physical displacements that include deformation-de-
pendent scale functions is more difficult and unnecessary. Instead,
coordinate displacements can be used as the field variables. This
approach was used by Truesdell and Toupin'* for Lagrangian
strains in general curvilinear coordinate systems; however, it has
not previously been used in incremental form for a finite element
formulation. The displacements are defined simply as

u, = x,~- X, : 3)

where | = r,0,z ina oylindrical system.
The strains can then be expressed in terms of the displacement
field and scale functions:

ij =

1 2 2
(h U +h u; +h ukju,” h akjski—aij) “@)
2H'H’

The displacement gradient components in the first three terms
are similar to the usual Cartesian expressions. The last two terms



